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Informe Ejecutivo

T́ıtulo: ACO-1.1-2008: Mejora de ACOhg-live usando componentes fuertemente conexas

Resumen: En este documento presentamos una mejora para el algoritmo ACOhg-live. La mejora
consiste en usar la clasificación de las componentes fuertemente conexas del autómata que
representa la negación de la fórmula LTL para aumentar la eficiencia y la eficacia de la
búsqueda. Los resultados muestran que el coste computacional de la mejora es despreciable
y las ventajas de la misma pueden ser importantes.

Objetivos:

1. Presentar una mejora para el algoritmo ACOhg-live basado en componentes fuerte-
mente conexas.

2. Comparar los resultados de ACOhg-live con y sin la mejora mencionada.

Conclusiones:

1. El uso de la mejora basada en componentes fuertemente conexas aumenta la tasa de
éxito y reduce los recursos computacionales requeridos para la búsqueda.

2. La longitud de las trazas de error puede aumentar ligeramente dependiendo del modelo.

Relación con

entregables:
PRE: SOFTW-1.0-2008 (lectura necesaria)

PRE: ACO-1.0-2008 (lectura necesaria)
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Executive Summary

Title: ACO-1.1-2008: Improving ACOhg-live by Analyzing Strongly Connected Components

Abstract: In this deliverable we present an improvement on the ACOhg-live algorithm. This improve-
ment consists of using the strongly connected components of the automaton representing
the negation of the LTL formula in order to increase the efficiency and efficacy of the search.
The results show that the computational cost of the improvement is negligible and the
advantages of applying it can be important.

Goals:

1. Present an improvement for ACOhg-live based on strongly connected components.

2. Compare the results of ACOhg-live with and without the improvement.

Conclusions:

1. The use of the SCC improvement increases the hit rate and decreases the computa-
tional resources required for the search.

2. The length of error paths could be slightly increased depending on the particular
model.

Relation with

deliverables:
PRE: SOFTW-1.0-2008 (mandatory reading)

PRE: ACO-1.0-2008 (mandatory reading)
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1 Introduction

Model checking [3] is a well-known and fully automatic formal method that can check properties of software systems.
In model checking, all the possible program states are analyzed (in an explicit or implicit way) in order to prove
(or refute) that the program satisfies a given property such as absence of deadlocks or starvation. Some other more
general properties can be specified using a temporal logic like Linear Temporal Logic (LTL) or Computation Tree
Logic (CTL).

We introduced in deliverable SOFTW-1.0-2008 the motivation for using metaheuristic algorithms and ACO in
particular for this problem. In deliverable ACO-1.0-2008 we present a proposal, ACOhg-live, for checking liveness
properties. In this deliverable we present an improvement to ACOhg-live that takes into account the structure of the
automaton representing the property to check. In particular, this improvement is based on the strongly connected
components of the property automaton.

The deliverable is organized as follows. The next section background information on properties and automata. It
also introduces the terminology we will use through the document. Section 3 describes the improvement we propose
for ACOhg-live. In Section 4 we present some experimental results comparing ACOhg-live with and without the
improvement. Finally, Section 5 outlines the conclusions. In this deliverable we do not describe ACOhg and ACOhg-
live. For a description of both algorithms the reader should see deliverables SOFTW-1.0-2008 and ACO-1.0-2008.

2 Background

In this section we give some details on the way in which properties are checked in explicit state model checking. In
particular, we will focus on the model checker HSF-SPIN [5], an experimental model checker by Edelkamp, Lluch-
Lafuente and Leue based on the popular model checker SPIN[9]. First, we formally define the concept of property of
a concurrent system. After that, we detail how the properties can be represented using automata and we define the
concept of strongly connected components, which allows us to implement improvements on the search algorithms.

2.1 Properties

Let S be the set of states of a program (concurrent system), Sω the set of infinite sequences of program states, and
S∗ the set of finite sequences of program states. The elements of Sω are called executions and the elements of S∗ are
partial executions. However, (partial) executions are not necessarily real (partial) executions of the program. The
real executions of the program form a subset of Sω. A property P is a set of executions, P ⊆ Sω. We say that an
execution σ ∈ Sω satisfies the property P if σ ∈ P , and σ violates the property if σ /∈ P . In the former case we use
the notation σ ⊢ P , and the latter case is denoted with σ 0 P . A property P is a safety property if for all executions
σ that violate the property there exists a prefix σi (partial execution) such that all the extensions of σi violate the
property. Formally,

∀σ ∈ Sω : σ 0 P ⇒ (∃i ≥ 0 : ∀β ∈ Sω : σiβ 0 P) , (1)

where σi is the partial execution composed of the first i states of σ. Some examples of safety properties are the
absence of deadlocks and the fulfilment of invariants. On the other hand, a property P is a liveness property if for
all the partial executions α there exists at least one extension that satisfies the property, that is,

∀α ∈ S∗ : ∃β ∈ Sω, αβ ⊢ P . (2)

One example of liveness property is the absence of starvation. The only property that is a safety and liveness
property at the same time is the trivial property P = Sω. It can be proved that any given property can be expressed
as an intersection of a safety and a liveness property [1].

The properties of a concurrent system are usually specified using a temporal logic, like Linear Temporal Logic
(LTL) or computation Tree logic (CTL). We use the former in this work. In this case, atomic propositions are defined
on the base of the variables and program counters of the processes of the system. The property is expressed using an
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LTL formula composed of the atomic propositions. For example, an LTL property can be �p (read “henceforth p”),
where p ≡ x > 3. This property specifies an invariant: for a concurrent system to fulfil this property the variable
x must always be greater than 3. This property consists of all the executions σ in which the variable x is greater
than 3 for all the states of σ.

2.2 Property Automaton and Checking

The way in which LTL properties are checked in HSF-SPIN is by means of an automaton that captures the violations
of the property, that is, the automaton accepts the executions in which the property is violated. This automaton
is called never claim in SPIN and HSF-SPIN. This never claim can be automatically computed from the negation
of the LTL formula [7]. In order to find a violation of a given LTL property, HSF-SPIN (and SPIN) explores the
synchronous product of the concurrent model and the never claim, also called Büchi automaton. As an illustration,
in Fig. 1 we show the automaton of a simple concurrent system (left box), the never claim used to check the LTL
formula �(p → ♦q) (which means that an occurrence of p is always followed by an occurrence of q, not necessarily
in the next state), and the synchronous product of these two automata.
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Figure 1: Synchronous product of a simple concurrent system and a never claim.

HSF-SPIN (and SPIN) searches in the Büchi automaton for an execution σ = αβω composed of a partial execution
α ∈ S∗ and a cycle of states β ∈ S∗ containing an accepting state. If such an execution is found it violates the
liveness component of the LTL formula and, thus, the whole LTL formula. During the search it can also be found a
state in which the end state of the never claim is reached. This means that an execution has been found that violates
the safety component of the LTL formula and the partial execution α ∈ S∗ that leads the model to that state violates
the LTL formula1. In HSF-SPIN and SPIN model checkers the search can be done using the Nested Depth First
Search algorithm (NDFS) [8]. However, if the LTL formula represents a safety property (the liveness component is
true) the problem of finding a property violation is reduced to find a partial execution α ∈ S∗ violating the LTL
formula, i.e., it is not required to find an additional cycle containing the accepting state. In this case classical graph
exploration algorithms such as Breadth First Search (BFS), or Depth First Search (DFS) can be used for finding
property violations. These classical algorithms cannot be used when we are searching for liveness property violations
because they are not designed to find the cycle of states β above mentioned.

In order to improve the search for property violations it is possible to take into account the structure of the
never claim. The idea is based on the fact that a cycle of states in the Büchi automaton entails a cycle in the never
claim. For improving the search first we need to compute the strongly connected components (SCCs) of the never
claim. A strongly connected subgraph G = (V, A) of a directed graph is that in which for all pairs of different nodes
u, v ∈ V there exist two paths: one from u to v and another one from v to u. The strongly connected components
of a directed graph are its maximal strongly connected subgraphs. Once we have the SCCs of the never claim we
have to classify them into three categories depending on the accepting cycles they include. We denote with N-SCC
those SCCs in which no cycle is accepting. A P-SCC is that in which there exists at least one accepting cycle and at
least one non-accepting cycle. Finally, F-SCC are the SCCs in which all the cycles are accepting [6]. All the cycles
found in the Büchi automaton have an associated cycle in one SCC of the never claim. Furthermore, if the cycle is
accepting (which is the objective of the search) this SCC is necessarily a P-SCC or an F-SCC. The classification of
the SCCs of the never claim can be used to improve the search for property violations. In particular, the accepting
states in an N-SCC can be ignored, and the cycles found inside an F-SCC can be considered as accepting.

3 ACOhg-live improvement

We can make the search for liveness errors more efficient if we take into account the classification of the never claim
SCCs. The improvements are localized in two places of ACOhg-live. During the first phase, in which accepting
states are searched for, those accepting states that belong to an N-SCC in the never claim are ignored. The reason

1A deeper explanation of the foundations of the automata-based model checking can be found in [3] and [9].

4



Improving ACOhg-live by Analyzing Strongly Connected Components

is that an accepting state in an N-SCC cannot be part of an accepting cycle. This way, we reduce the number of
accepting states to be explored in the second phase.

The second improvement is localized in the computation of the successors of a state (line 10 in Algorithm 1) in
both, the first and the second phase of ACOhg-live. When the successors are computed, ACOhg checks if they are
included in the path that the ant has traversed up to the moment. If they are, the state is not considered as the next
node to visit since the ant would build a cycle. The improvement consists in checking if this cycle is in an F-SCC.
This can be easily checked by finding if the state that closes the cycle is in an F-SCC of the never claim. If it is,
then an accepting cycle has been found and the global search stops.

Algorithm 1 ACOhg

1: init = {initial node};
2: next init = ∅;
3: τ = initializePheromone();
4: step = 1;
5: stage = 1;
6: while step ≤ msteps do

7: for k=1 to colsize do {Ant operations}
8: ak = ∅;
9: ak

1 = selectInitNodeRandomly (init);
10: while |ak| < λant ∧ T (ak

∗
) − ak 6= ∅ ∧ ak

∗
/∈ O do

11: node = selectSuccessor (ak
∗
, T (ak

∗
), τ ,η);

12: ak = ak + node;
13: τ = localPheromoneUpdate(τ ,ξ,node);
14: end while

15: next init = selectBestPaths(init, next init, ak);
16: if f(ak) < f(abest) then

17: abest = ak;
18: end if

19: end for

20: τ = pheromoneEvaporation(τ , ρ);
21: τ = pheromoneUpdate(τ , abest);
22: if step ≡ 0 mod σs then

23: init = next init;
24: next init = ∅;
25: stage = stage+1;
26: τ = pheromoneReset();
27: end if

28: step = step + 1;
29: end while

The advantages of these improvements depend on the structure of the LTL formula and the model to check. We
can notice no advantages in some cases, especially when the number of N-SCC and F-SCC is small. However, the
computational cost of the improvements is negligible, since it is possible to check the kind of SCC associated to a
state in constant time.

4 Experiments

In this section we present some results obtained with our ACOhg-live algorithm. For the experiments we have
selected five Promela models implementing faulty concurrent systems: alter, giop, phi, elev and sgc. All these
models violate a liveness property that is specified in LTL. They can be found with the source code of ACOhg and
HSF-SPIN in http://oplink.lcc.uma.es/software. See [2] for a description of the models.

The parameters used in the experiments for the ACOhg algorithms in the two phases of ACOhg-live are shown
in Table 1. In the first phase we use an explorative configuration (ξ = 0.7, λant = 20) while in the second phase the
configuration is adjusted to search in the region near the accepting state found (intensification).

With respect to the heuristic information, we use the formula-based heuristic defined in [4] in the first phase of
the search when the objective is to find accepting states. In the second phase we use the distance of finite state
machines.

Since we are working with stochastic algorithms, we perform 100 independent runs to get a high statistical
confidence, and we report the mean and the standard deviation of the independent runs. The machine used in the
experiments is a Pentium 4 at 2.8 GHz with 512 MB of RAM and Linux operative system with kernel version 2.4.19-
4GB. In all the experiments the maximum memory assigned to the algorithms is 512 MB: when a process exceeds
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Table 1: Parameters for ACOhg-live
First phase ACOhg Second phase ACOhg

Parameter Value Parameter Value

msteps 100 msteps 100
colsize 10 colsize 20
λant 20 λant 4
σs 4 σs 4
ι 10 ι 10
ξ 0.7 ξ 0.5
a 5 a 5
ρ 0.2 ρ 0.2
α 1.0 α 1.0
β 2.0 β 2.0
pp 1000 pp 1000
pc 1000 pc 1000

this memory it is automatically stopped. We do this in order to avoid a high amount of data flow from/to the
secondary memory, which could significantly affect the CPU time required in the search.

We compare two versions of the ACOhg-live algorithm: one of them using the SCC improvement (called ACOhg-
live+ in the following) and the other one without that improvement (called ACOhg-live−). With this experiment we
want to analyze the influence on the results of the SCC improvement. All the properties checked in the experiments
have at least one F-SCC in the never claim; none of them has a P-SCC; and all except sgc have exactly one N-SCC.
In Table 2 we show the hit rate, the length of the error trails, the memory required (in Kilobytes), and the run
time (in milliseconds) of the ACOhg-live algorithms. The average values of the 100 independent runs are shown in
normal size while the standard deviation values are shown as subscript. We highlight with a grey background the
best results (maximum values for hit rate and minimum values for the rest of the measures). We also show the
results of a statistical test (with level of significance α = 0.05) in order to check if there exist statistically significant
differences (last column). A plus sign means that the difference is significant and a minus sign means that it is not.
In the case of the hit rate we use a Westlake-Schuirmann test of equivalence of two independent proportions, for the
rest of the measures we use a Kruskal-Wallis test [10].

Table 2: Influence of the SCC improvement
Models Meas. ACohg-live− ACOhg-live+ T

alter

Hit 100/100 100/100 -
Len. 10.00 0.00 15.82 6.74 +
Mem. 1929.00 0.00 1929.00 0.00 -
CPU 241.80 59.35 10.40 3.98 +

giop10

Hit 84/100 89/100 -
Len. 68.57 5.29 67.60 6.09 -
Mem. 6375.90 542.50 5098.75 1580.90 +
CPU 7816.55 4779.41 935.84 1009.74 +

giop15

Hit 46/100 57/100 -
Len. 81.26 3.64 78.30 6.49 +
Mem. 9001.17 483.22 8538.54 1610.63 -
CPU 11725.65 7307.22 2016.84 1254.88 +

giop20

Hit 14/100 30/100 +
Len. 93.29 2.08 88.47 4.72 +
Mem. 11132.71 894.26 10403.17 1920.50 -
CPU 11360.00 4564.72 2575.33 1103.46 +

phi20

Hit 98/100 97/100 -
Len. 88.29 6.91 108.73 10.08 +
Mem. 3398.63 34.05 3385.04 63.41 -
CPU 5162.04 645.64 851.75 1462.71 +

phi30

Hit 94/100 95/100 -
Len. 122.60 9.58 139.15 9.06 +
Mem. 5146.62 44.70 5148.12 57.48 -
CPU 10980.64 2156.73 2701.79 3876.34 +

phi40

Hit 77/100 81/100 -
Len. 154.74 9.74 166.83 9.44 +
Mem. 7573.68 66.50 7545.35 81.04 +
CPU 20422.60 5795.93 5807.41 7588.17 +

elev10

Hit 100/100 100/100 -
Len. 126.56 18.32 127.76 16.89 -
Mem. 2617.60 7.93 2617.04 9.72 -
CPU 2577.30 2258.38 2372.90 1963.04 -

elev15

Hit 100/100 100/100 -
Len. 182.02 9.75 180.04 16.83 -
Mem. 3163.56 10.98 3164.64 13.44 -
CPU 2683.00 3274.20 2812.10 3540.73 -

elev20

Hit 100/100 100/100 -
Len. 233.00 0.00 231.62 13.73 -
Mem. 3716.44 13.15 3716.92 11.29 -
CPU 3900.60 7141.02 3034.00 4709.07 -

sgc

Hit 32/100 100/100 +
Len. 24.00 0.00 24.00 0.00 -
Mem. 2699.00 23.13 2285.00 0.00 +
CPU 575191.88 62021.86 710.20 48.58 +

With respect to the hit rate both algorithms obtain the maximum value (100%) in the models alter and elevj.
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In giopj ACOhg-live+ obtains higher hit rate than ACOhg-live− and the difference increases with the model size.
In phij the hit rate is similar in both algorithms (not statistically significant). In sgc, ACOhg-live+ obtains the
maximum hit rate while ACOhg-live− is only able to find an error in 32% of the executions. Thus, the first conclusion
of the experiment is that ACOhg-live+ is able to obtain higher hit rates than ACOhg-live−.

Regarding the quality of the solutions, we observe in Table 2 that the length of the error paths obtained with
ACOhg-live− is shorter with statistical confidence than the length of the ones obtained with ACOhg-live+ in alter

and phij. On the other hand, the lengths of the error paths obtained by ACOhg-live+ are shorter than the ones
obtained by ACOhg-live− with statistical confidence in giop15 and giop20. In the rest of the models there is no
statistically significant difference.

Finally, concerning the computational resources (memory and time required for finding an error path) we can
observe that ACOhg-live+ outperforms the results of ACOhg-live−. All the statistically significant differences in
memory and CPU time support this claim. This is the expected result, since the cost of the SCC improvement in
terms of memory and computation time is negligible and, in addition, the search is more effective.

5 Conclusions

In summary, we can conclude that the use of the SCC improvement increases the hit rate and decreases the com-
putational resources required for the search. The length of error paths could be slightly increased depending on the
particular model.
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