
Diseño Inteligente de Redes Inalámbricas de Comunicación
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Informe Ejecutivo

T́ıtulo: BIO-1.0: Un algoritmo h́ıbrido para el problema del ensamblado de fragmentos de ADN

Resumen: En este documento se propone y estudia el comportamiento de un nuevo algoritmo h́ıbrido
para el problema del ensamblado de fragmentos de ADN. Este problema debe ser resuelto
como fase inicial de cualquier proyecto relativo al genoma y por lo tanto es muy importante
ya que las restantes fases dependen de la calidad que ofrezca como resultado. Este problema
es de tipo NP por lo que no puede resolverse con técnicas convencionales. En este documento
se analizará el algoritmo h́ıbrido propuesto y se compará contra las técnicas “puras” a partir
del que se forma, AG y PALS.

Objetivos:

1. Proponer un nuevo algoritmo que combine las caracteŕısticas de algoritmos existentes.

2. Comparar su rendimiento respecto a los algoritmos “puros” que han sido utilizados
para construir el h́ıbrido.

3. Comparar el algoritmo resultante contra los algoritmos estado-del-arte para el proble-
ma analizado.

Conclusiones:

1. Los resultados de la propuesta h́ıbrida superan en calidad a los algoritmos existentes
en las instancias probadas.

2. En cambio, la eficiencia del nuevo algoritmo es bastante menor que la de algunos de
los algoritmos existentes, en especial del PALS, por lo que se necesita mejorar este
aspecto en las siguientes versiones (por ejemplo, proponiendo versiones paralelas).

Relación con

entregables:
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Executive Summary

Title: BIO-1.0: A Hybrid Algorithm for the DNA Fragment Assembly Problem

Abstract: In this document we propose and study the behavior of a new hybrid heuristic algorithm for
the DNA fragment assembly problem. The DNA fragment assembly is a problem solved in
the early phases of the genome project and thus very important, since the other steps depend
on its accuracy. This is an NP-hard combinatorial optimization problem which is growing
in importance and complexity as more research centers become involved on sequencing new
genomes. In this document will be analyzed the hybrid version and it will be compared
against the “pure” algorithms, GA and PALS.

Goals:

1. Propose a new algorithm combining several existing ones.

2. Compare the proposed algorithm against the “pure” algorithms.

3. Compare the proposed method against the state-of-the-art techniques for this problem.

Conclusions:

1. The new hybrid algorithm outperforms the existing methods for the tested instances.

2. The efficiency of the hybrid algorithm is quite worse than some existing methods and
the new mechanism for improve it should be proposed (such as parallel versions).

Relation with

deliverables:
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1. Introduction

With the advance of computational science, bioinformatics has become more and more attractive to researchers
in the field of computational biology. Genomic data analysis using computational approaches is very popular as well.
The primary goal of a genomic project is to determine the complete sequence of the genome and its genetic contents.
Thus, a genome project is accomplished in two steps; the first one is the genome sequencing and the second one is
the genome annotation (i.e., the process of identifying the boundaries between genes and other features in raw DNA
sequence).

In this work, we focus on the genome sequencing, which is also known as the DNA fragment assembly problem.
The fragment assembly occurs in the very beginning of the process and therefore other steps depend on its accuracy.
At present, DNA sequences that are longer than 600 base-pairs (bps) cannot routinely be sequenced accurately. For
example, human DNA is about 3.2 billion nucleotides in length and cannot be read at once. Hence, long strands of
DNA need to be broken into small fragments for sequencing in a process called shotgun sequencing. In this approach,
several copies of a portion of DNA are each broken into many segments short enough to be sequenced automatically.
But this process does not keep neither the ordering of the fragments nor the portion from which a particular fragment
came. This leads to the DNA fragment assembly problem [1] in which these short sequences have to be reassembled
to their (supposed) original form. The automation allows shotgun sequencing to proceed far faster than traditional
methods. But comparing all the tiny pieces and matching up the overlaps requires massive computation or carefully
designed programs.

The assembly problem is therefore a combinatorial optimization problem that, even in the absence of noise, is
NP-hard [2]: given k fragments, there are 2kk! possible combinations. Over the past decade a number of fragment
assembly packages have been developed and used to sequence different organisms. The most popular packages are
PHRAP [3], TIGR assembler [4], STROLL [5], CAP3 [6], Celera assembler [7], and EULER [8]. These packages
deal with the previously described challenges to different extents, but none of them solves all of them. Each package
automates fragment assembly using a variety of algorithms. The most popular techniques are greedy-based procedures
while other approaches have tackled the problem with metaheuristics [9]. Recently, Alba and Luque [10] proposed
a new promising heuristic for this problem, PALS, in which the search is guided by an estimation of the number of
contigs. This estimation is one key point in reducing the computational demands of the technique. We here extend
[10] and design a new hybrid method based on that heuristic. This method consists of a genetic algorithm which
uses PALS as a mutation operator. We compare the results of our new approach with the “pure” methods, GA and
PALS.

2. The Optimization Problem Addressed

In order to determine the function of specific genes, scientists have learned to read the sequence of nucleotides
comprising a DNA sequence in a process called DNA sequencing. To do that, multiple exact copies of the original
DNA sequence are made. Each copy is then cut into short fragments at random positions. These are the first three
steps depicted in Fig. 1 and they take place in the laboratory. After the fragment set is obtained, a traditional
assemble approach is followed in this order: overlap, layout, and then consensus. To ensure that enough fragments
overlap, the reading of fragments continues until a coverage is satisfied. These steps are the last three ones in Fig. 1.
In what follows, we give a brief description of each of the three phases, namely overlap, layout, and consensus.

Overlap Phase - Find the overlapping fragments. This phase consists in finding the best or longest match between
the suffix of one sequence and the prefix of another. In this step, we compare all possible pairs of fragments to
determine their similarity. Usually, a dynamic programming algorithm applied to semiglobal alignment is used in
this step. The intuition behind finding the pairwise overlap is that fragments with a high overlap are very likely next
to each other in the target sequence.

Layout Phase - Find the order of fragments based on the computed similarity score. This is the most difficult step
because it is hard to tell the true overlap due to the following challenges:
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1. Duplicate and
2. Sonicate

3. Sequence

4. Call Bases

CCGTAGCCGGGATCCCGTCC

CCCGAACAGGCTCCCGCCGTAGCCG

AAGCTTTTTCCCGAACAGGCTCCCG

CCGTAGCCGGGATCCCGTCC

CCCGAACAGGCTCCCGCCGTAGCCG

AAGCTTTTCTCCCGAACAGGCTCCCG

5. Layout

AAGCTTTTCTCCCGAACAGGCTCCCGCCGTAGCCGGGATCCCGTCC

6. Call Consensus

Figura 1: Graphical representation of DNA sequencing and assembly

1. Unknown orientation: After the original sequence is cut into many fragments, the orientation is lost. One does
not know which strand should be selected. If one fragment does not have any overlap with another, it is still
possible that its reverse complement might have such an overlap.

2. Base call errors: There are three types of base call errors: substitution, insertion, and deletion. They occur
due to experimental errors in the electrophoresis procedure (the method used in the laboratories to read the
ADN sequences). Errors affect the detection of fragment overlaps. Hence, the consensus determination requires
multiple alignments in highly coverage regions.

3. Incomplete coverage: It happens when the algorithm is not able to assemble a given set of fragments into a
single contig. A contig is a sequence in which the overlap between adjacent fragments is greater or equal to a
predefined threshold (cutoff parameter).

4. Repeated regions: “Repeats” are sequences that appear two or more times in the target DNA. Repeated regions
have caused problems in many genome-sequencing projects, and none of the current assembly programs can
handle them perfectly.

5. Chimeras and contamination: Chimeras arise when two fragments that are not adjacent or overlapping on the
target molecule join together into one fragment. Contamination occurs due to the incomplete purification of
the fragment from the vector DNA.

After the order is determined, the progressive alignment algorithm is applied to combine all the pairwise align-
ments obtained in the overlap phase.

Consensus Phase - Derive the DNA sequence from the layout. The most common technique used in this phase is
to apply the majority rule in building the consensus.
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To measure the quality of a consensus, we can look at the distribution of the coverage. Coverage at a base position
is defined as the number of fragments at that position. It is a measure of the redundancy of the fragment data, and it
denotes the number of fragments, on average, in which a given nucleotide in the target DNA is expected to appear.
It is computed as the number of bases read from fragments over the length of the target DNA [1].

Coverage =

∑n

i=1 length of the fragment i

target sequence length
(1)

where n is the number of fragments. The higher the coverage, the fewer number of the gaps, and the better the
result.

3. Algorithms

In this section we detail the three proposed algorithms that we have designed to solve the DNA fragment assembly
problem. Firstly, we explain the two cannonical methods, a GA and PALS (Problem Aware Local Search), and then
we address the hybrid one (GA+PALS).

4. Genetic Algorithm

A genetic algorithm (GA) [11] is an iterative technique that applies stochastic operators on a pool of individuals
(the population). Every individual in the population is the encoded version of a tentative solution. Initially, this
population is randomly generated. An evaluation function associates a fitness value to every individual indicating its
suitability to the problem.

The genetic algorithm that we have developed for the solution of the DNA fragment assembly follows the basic
structured shown in Algorithm 1. In next paragraphs we give some details about the most important issues of our
GA implementation.

Algorithm 1 Basic GA

Generate (P(0))
t := 0
while not Termination Criterion(P(t)) do

Evaluate(P(t))
P’(t) := Selection(P(t))
P’(t) := Recombination(P’(t))
P’(t) := Mutation(P’(t))
P(t+1) := Replacement(P(t), P’(t))
t := t+1

end while

return Best Solution Found

For the indivuals, we use a permutation representation with integer number encoding. A permutation of integers
represents a sequence of fragment numbers, where successive fragments are later assumed to overlap. The solution in
this representation requires a list of fragments assigned with a unique integer ID. For example, 8 fragments will need
eight identifiers: 0, 1, 2, 3, 4, 5, 6, 7. The permutation representation requires special operators to make sure that we
always get legal (feasible) solutions. In order to maintain a legal solution, the two conditions that must be satisfied
are (1) all fragments must be presented in the ordering, and (2) no duplicate fragments are allowed in the ordering.
For example, one possible ordering for 4 fragments is 3 0 2 1. It means that fragment 3 is at the first position and
fragment 0 is at the second position, and so on.

In the DNA fragment assembly problem, the fitness function measures the multiple sequences alignment quality
and finds the best scoring alignment. Parsons, Forrest, and Burks mentioned two different fitness functions [12]. In
this work, we use the first one. This function sums the overlap score for adjacent fragments in a given solution. When
this fitness function is used, the objective is to maximize such a score. It means that the best individual will have
the highest score.

F (l) =

n−2∑

i=0

wf [i],f [i+1], (2)

where wi,j is the overlap between fragments i and j. This function have several drawbacks, but despite then and its
apperent simplicity it is very difficult to find a better one (see next subsection).

For our experimental runs, we use the order-based crossover (OX) as recombination operator. The order-based
crossover operator first copies the fragment ID between two random positions in Parent1 into the offspring’s cor-
responding positions. We then copy the rest of the fragments from Parent2 into the offspring in the relative order
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presented in Parent2. If the fragment ID is already present in the offspring, then we skip that fragment. The method
preserves the feasibility of every string in the population.

Finally, the swap mutation operator is applied to maintain diversity in the population. This operator randomly
selects two positions from a permutation and then swaps the two fragment positions. Since this operator does not
introduce any duplicate number in the permutation, the solution it produces is always feasible.

4.1. Problem Aware Local Search (PALS)

Classical assemblers use fitness functions that favor solutions in which strong overlap occurs between adjacent
fragments in the layouts, using equations like Eq. 2. However, the actual objective is to obtain an order of the
fragments that minimizes the number of contigs, with the goal of reaching one single contig, i.e., a complete DNA
sequence composed of all the overlapping fragments. Therefore, the number of contigs is always used as the high-level
criterion to judge the whole quality of the results, since it is difficult to capture the dynamics of the problem into
other mathematical functions. Contig values are computed by applying a final step of refinement with a greedy
heuristic regularly used in this domain [13]. We have even found that in some (extreme) cases it is possible that a
solution with a better fitness (using Eq. 2) than other one generates a larger number of contigs (worse solution). All
this suggests that the fitness (overlapping) should be complemented with the actual number of contigs.

And here we arrive ti the true obstacle: the calculation of the number of contigs is a quite time-consuming
operations, and this definitely precludes any algorithm to use it. A solution to this problem is the utilization of a
method which should not need to know the exact number of contigs, thus being computationally light. Our key
contribution is to indirectly estimate the number of contigs by measuring the number of contigs that are created or
destroyed when tentative solutions are manipulated in the algorithm. We propose a variation of Lin’s 2-opt [14] for
the DNA field, which does not only use the overlap among the fragments, but that it also takes into account (in an
intelligent manner) the number of contigs that have been created or destroyed. The pseudo-code of our proposed
method is shown in Algorithm 2.

Algorithm 2 PALS

s← GenerateInitialSolution() {Create the initial solution}
repeat

L← ∅
for i = 0 to N do

for j = 0 to N do

∆c, ∆f ← CalculaeDelta(s,i,j) {See Algorithm 3}
if ∆c >= 0 then

L← L∪ < i, j, ∆f , ∆c > {Add candidate movements to L}
end if

end for

end for

if L <> ∅ then

< i, j, ∆f , ∆c >← Select(L) {Select a movement among the candidates}
ApplyMovement(s,i,j) {Modify the solution}

end if

until no changes
return: s

Our algorithm works on a single solution (an integer permutation) which is generated using the
GenerateInitialSolution method, and it is iteratively modified by the application of movements in a structured
manner. A movement is a perturbation (ApplyMovement method) that, given a solution s, and two positions i and
j, reverses the subpermutation between the positions i and j.

The key step in PALS is the calculation of the variation in the overlap (∆f ) and in the number of contigs (∆c)
among the current solution and the resulting solution after applying a movement (see Algorithm 3). This calculation
is computationally light since we do not calculate neither the fitness function nor the number of contigs, but instead
we estimate the variation of these values. To do this, we only need to analyze the affected fragments by the tentative
movement (i, j, i− 1 and j + 1), reducing the overlap score of affected fragments of the current solution and adding
the one of the modified solution to ∆f (equations of lines 4-5 of Algorithm 3) and testing if some current contig is
broken (first two if statements of Algorithm 3) or two contigs are merged (last two if statements of Algorithm 3) by
the movement operator.

In each iteration, PALS makes these calculations for all possible movements, storing the candidate movements in
a list L. Our method only considers those candidate movements that do not increase the number of contigs (∆c ≤ 0).
Once it has completed the previous calculations, the method selects a movement of the list L and applies it. The
algorithm stops when no more candidate movements are generated.
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Algorithm 3 CalculateDelta(s,i,j) function

∆c ← 0
∆f ← 0
{Calculate the variation in the overlap}
∆f = ws[i−1]s[j] + ws[i]s[j+1) {Add the overlap of the modified solution}
∆f = ∆f − ws[i−1],s[i] − ws[j]s[j+1] {Remove the overlap of the current solution}
{Test if a contig is broken, and if so, it increases the number of contigs}
if ws[i−1]s[i] > cutoff then

∆c = ∆c + 1
end if

if ws[j]s[j+1] > cutoff then

∆c = ∆c + 1
end if

{Test if two contig are merged, and if so, it decreases the number of contigs}
if ws[i−1]s[j] > cutoff then

∆c = ∆c − 1
end if

if ws[i]s[j+1] > cutoff then

∆c = ∆c − 1
end if

return: ∆f , ∆c

To complete the definition of our method we must decide how the initial solution is generated
(GenerationInitialSolution method) and how a movement is selected among all possible candidates (Select
method). In [10] we tested several alternatives for these operations, and we concluded that the best setting is to start
from a random solution and to select the best movement found in each iteration.

4.2. Hybrid Approach

Finally, we define here the hybrid algorithm proposed in this wor. In its broadest sense, hybridization refers to
the inclusion of problem-dependent knowledge in a general search algorithm [15] in one of two ways: strong hybrids,
where problem-knowledge is included as problem-dependent representation and/or operators, and weak hybrids,
where several algorithms are combined in some manner to yield the new hybrid algorithm. Therefore, we define
a weak hybrid called GA+PALS, where a GA uses PALS as an additional evolutionary operator. The figure and
the pseudo-code of this approach is shown in Algorithm 4. In the main loop of this method after the traditional
recombination and mutation operators are applied, several solutions are randomly selected (according to a very low
probability) from the current offspring and they are improved using the local search algorithm. The rationale for this
sort of hybridization is that, while the GA locates “good” regions of the search space (exploration), PALS allows
for exploitation in the best regions found by its partner (neighborhood intensification). Evidently, the motivation
in this case is to see if, by taking the best of these two heuristics (i.e., the genetic algorithm and PALS), we could
produce another heuristic which would perform better than any of the two approaches from which it was created
(new emergent behavior).

Algorithm 4 Hybrid GA+PALS

Generate (P(0))
t := 0
while not Termination Criterion(P(t)) do

Evaluate(P(t))
P’(t) := Selection(P(t))
P’(t) := Recombination(P’(t))
P’(t) := Mutation(P’(t))
P’(t) := PALS(P’(t))
P(t+1) := Replacement(P(t), P’(t))
t := t+1

end while

return Best Solution Found
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Cuadro 1: Information of datasets. Accession numbers are used as instance names
Parameters BX842596

Coverage 4 7
Mean fragment length 708 703
Number of fragments 442 773

Name BX842596(4) BX842596(7)

5. Experiments

In this section we analyze the behavior of our proposed GA+PALS method. First, the target problem instances
used and the parameter setting are presented in Section 5.1. In the next subsection, we study the results of the
different algorithms presented previously in Section 3, and finally, we compare our approaches with other assemblers.

The experiments have been executed on a Intel Pentium IV 2.8GHz with 1GB running SuSE Linux 8.1. Because
of the stochastic nature of the algorithms, we performed 30 independent runs of each test to gather meaningful
experimental data and apply statistical confidence metrics to validate our results and conclusions.

5.1. Target Problem Instances and Parameter Settings

To test and analyze the performance of our algorithm we generated several problem instances with GenFrag [16].
GenFrag takes a known DNA sequence and uses it as a parent strand from which random fragments are generated
according to the criteria supplied by the user (mean fragment length and coverage of parent sequence).

We have chosen a large sequence from the NCBI web site1: the Neurospora crassa (common bread mold) BAC,
with accession number BX842596, which is 77,292 bases long. The instances generated are free from errors of types
4 and 5 (see Section 2) and the remainder errors are considered and eliminated during the calculation of the overlap
among the fragments.

We must remark that the instance is quite complex. It is often the case that researches use only one or two
instances of low-medium sizes (15-30k bases long). We dare to include two large instances (up to 77k bases long)
because the efficiency of our technique, that will be shown to be competitive to modern assemblers.

We experimented with coverage 4 and 7. The latter instances are very hard since they are generated from very
long sequences using a small/medium value of coverage and a very restrictive cutoff (threshold to join adjacent
fragments in the same contig). The combination of these parameters produces a very complex instance. For example,
longer target sequences have been solved in the literature [6], however they have a higher coverage which makes
then not so difficult. The reason is that the coverage measures the redundancy of the data, and the higher coverage,
the easier the problem. The cutoff, which we have set to thirty (a very high value), provides one filter for spurious
overlaps introduced by experimental error. Instances with these features have been solved in the past only when
target sequences vary from 20k to 50k base pairs [12, 13, 17] while we solve instances up to 70k base pairs.

Table 1 presents information about the specific fragments sets we use to test our algorithm.
From these previous analyses, we conclude that the best settings for our problem instances of the fragment as-

sembly problem are the following: the GA uses a population size of 1024 individuals, OX as crossover operator (with
probability 0.8), and with an edge swap mutation operator (with probability 0.2). We use the same configuration
for the hybrid one, including the PALS as additional evolutionary operator with a very low probability (2/pop-
ulation size). A summary of the conditions for our experimentation is found in Table 2. Values in the tables are
average results over 30 independent runs. Since we deal with stochastic algorithms, we have carried out an statistical
analysis of the results which consists of the following steps. A Kolmogorov-Smirnov test is performed in order to
check whether the variables are normal or not. All the Kolmogorov-Smirnov normality tests in this work were not
successful, and therefore we use a non-parametric test: Kruskal-Wallis (with 95% of confidence).

5.2. Performance Analysis

We thoroughly compare in this section the results obtained by the hybrid GA+PALS, a GA and the PALS
heuristic itself. Additionally, these algorithms are compared versus some of the most popular assemblers in the
literature in terms of the final number of assembled contigs in the last part of this section.

We show in tables 3 and 4 the results obtained by the studied algorithms for instance BX842596 with coverage
4 and 7, respectively. Specifically, we compare the algorithms in terms of the best and average solutions found, the
best and average number of contigs in the solution, and the average elapsed wall clock time. The best results are
bolded. All the obtained results are statistically significant (it is indicated by + symbol in Test row).

It can be seen in these two tables that the proposed hybrid method is the best of the three compared algorithms for
the two studied instances in terms of best and average solution found, and the number of contigs in the solution. This
means that GA+PALS is very good at finding accurate solutions, which is the main goal of biologists. Conversely,

1http://www.ncbi.nlm.nih.gov/
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Cuadro 2: Parameters for GA and GA+PALS.

Paramter Value

Independent runs 30
Cutoff 30
Max Evaluations 512000
Popsize 1024
Pc 0.8
Pm 0.2
Selection Ranking
PPALS 2/Popsize

Cuadro 3: Comparison of the studied algorithms. Instance BX842596(4)
Best Average Best Average Time

Solution Solution Contigs Contigs (seconds)

PALS 227130 226744,33 4 9,9 3,87
GA 92772 88996,6 6 14,29 32,62
GA+PALS 228810 227331,24 2 4,71 298,06

Test • + • + +

it is much slower than PALS, as it was expected. The GA is the worst algorithm with statistically significant results
in all the cases (Test row).

An interesting finding is that, even thought the GA is the worst algorithm, it becomes the more accurate after
hybridizing it with PALS as a local search step. Also, although the run time is clearly penalized (population driven
search), it is still highly competitive with the existing assemblers (see Table 5 in the literature (which require several
hours). Indeed, the hybrid method is not only the most accurate of the compared algorithms, but also very robust
in its accuracy (lowest average contigs, see Table 3). Additionally, since GAs are very easily parallelizable [18], the
utilization of parallel platforms or even grid systems might allow a considerable reduction of the execution time.

Cuadro 4: Comparison of the studied algorithms. Instance BX842596(7)
Best Average Best Average Time

Solution Solution Contigs Contigs (seconds)

PALS 443512 440779,3 2 7,8 24,84
GA 308297 304330,6 4 14,29 185,77
GA+PALS 445426 443234,81 2 3,69 1531,31

Test • + • + +

Cuadro 5: Best final number of contigs for the studied assemblers and for other specialized systems.

PALS GA GA+PALS
PMA CAP3 Pharp
[13] [6] [3]

BX842596(4) 4 6 2 7 6 6
BX842596(7) 2 4 2 2 2 2

The three studied algorithms are compared versus some of the most important assemblers existing in the literature
in Table 5. These algorithms are a pattern matching algorithm (PMA) [13] and two commercially available packages:
CAP3 [6] and Phrap [3]. From this table we can conclude that the proposed GA+PALS is a really competitive tool
in the best trade-off for biologists and computer scientists, clearly outperforming all the compared algorithms, and
thus representing a new state of the art.

6. Conclusions

The DNA fragment assembly is a very complex problem in computational biology. Since the problem is NP-
hard, the optimal solution is at impossible to find for real cases, only for very small problem instances. Hence,
computational techniques of affordable complexity such as heuristics are needed for it.

We proposed in this work a new hybrid algorithm for solving the DNA fragment assembly problem. The algorithm
was obtained after hybridizing a GA with the PALS heuristic, a recently proposed algorithm that represents the
state of the art for this problem. The resulting algorithm clearly improves the results of PALS, as well as those of
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an equivalent GA without local search. The drawback is that, the resulting GA+PALS considerably increases the
computational time with respect to PALS.
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