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Informe Ejecutivo

T́ıtulo: MULTIOBJ-1.0: Técnicas de Optimización Multi-objetivo y Problemas Escalables en el
Número de Variables

Resumen: Este documento tiene como objetivo estudiar la escalabilidad de un conjunto técnicas de op-
timización multi-objetivo cuando aumenta el número de variables de decisión del problema
a resolver. Se han estudiado problemas con distinta topoloǵıa, y con un número máximo
de hasta 2048 variables. Las técnicas estudiadas son tres algoritmos genéticos (NSGA-II,
SPEA2 y PESA-II), una estrategia evolutiva (PAES), un algoritmo genético celular (MO-
Cell), un algoŕıtmo basado en cúmulo de part́ıculas (OMOPSO), una evolución diferencial
(GDE3) y un algoritmo basado en búsqueda dispersa (AbYSS).

Objetivos:

1. Estudiar la escalabilidad de un conjunto de técnicas de optimización multi-objetivo
cuando se resuelven problemas desde 8 hasta 2048 variables.

2. Estudiar la velocidad, en término del número de evaluaciones necesarias, para con-
verger al frente solución del problema.

3. Establecer un criterio para el estudio de la escalabilidad y convergencia de este tipo
de técnicas.

Conclusiones:

1. OMOPSO y GDE3 son las técnicas más prometedoras:

(a) Presentan un alto grado de esalabilidad

(b) Han demostrado estar entre las más rapidas convergiendo hacia el frente solución
del problema

2. Las técnicas de optimización más modernas, MOCell y AbYSS, son las que garantizan
el mejor rendimiento tras OMOPSO y GDE3.

3. Técnicas clásicas como SPEA2, PESA-II y PAES son los algoritmos que peor escalan
y necesitan un mayor número de evaluaciones para converger

Relación con
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Executive Summary

Title: MULTIOBJ-1.0: Multi-Objective Optimization Techniques and Parameter Scalable Prob-
lems

Abstract: This report studies the behavior of a number of state-of-the-art multi-objective optimization
metaheuristics when solving parameter scalable problems. Five scalable problems having dif-
ferent features have been considered, with numbers of variables ranging from 8 to 2048. The
studied techniques are three genetic algorithms (NSGA-II, SPEA2, and PESA-II), an evolu-
tion strategy (PAES), a cellular genetic algorithm (MOCell), a particle swarm optimization
metaheuristic (OMOPSO), a differential evolution (GDE3), and a scatter search (AbYSS).

Goals:

1. Study the behaviour of a number of multi-objective optimizers when solving problems
having 8, 16, 32, 64, 128, 256, 512, 1024, and 2048 variables.

2. Study the speed of the problems, measured in number of evaluations, to converge to
the true Pareto front of the problems.

3. Define criteria to study scalability and convergence.

Conclusions:

1. GDE3 and OMOPSO are the most promising techniques:

(a) They scale better than the rest of algorithms

(b) Their convergence speeds are among the fastest.

2. MOCell, AbYSS and NSGA-II provide the best performance after GDE3 and
OMOPSO.

3. Classical algorithms (SPEA2, PESA-II, and PAES) scale the worst, and they need
higher number of evaluations to converge than the rest of solvers.

Relation with

deliverables:
PRE: AFP-1.2-2007 (mandatory reading)

CO: MO-1.5-2008 (advisable reading)
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1 Introduction

Many real world problems are multi-objective in nature (i.e, they have to optimize more than one conflicting objective
at the same time), and they also usually tend to be nonlinear and with objective functions that are very expensive
to evaluate. This situation has lead to the use of metaheuristics [1, 6] to deal with them. Metaheuristics are a
family of optimization techniques comprising Evolutionary Algorithms (EA), Particle Swarm Optimization (PSO),
Ant Colony Optimization (ACO), Tabu Search, Differential Evolution (DE), Scatter Search (SS) and many others.

The performance of these tecniques has been typically assessed by using benchmark problems, such as the Zitzler-
Deb-Thiele (ZDT) test problems [15], the Deb-Thiele-Laumanns-Zitzler (DTLZ) benchmark [3], and the Walking-
Fish-Group (WFG) test suite [7]).The methodology commonly adopted in the specialized literature is to compare
several algorithms using a fixed (pre-defined) number of objective function evaluations and to compare the values of
different quality indicators (e.g., generational distance [14] or hypervolume [17], among others).

The motivation driving us is that many real-world problems have hundred and thousand variables, and the
aforementioned benchmarks have been normally adopted using a maximum of up to 30 variables. Thus, the studies
currently available use not to consider the capability of current multi-objective metaheuristic algorithms to properly
scale when dealing with a very large number of decision variables.

Another interesting issue that has been scarcely covered in the specialized literature is the analysis of the behavior
of a multi-objective metaheuristic until reaching the true Pareto front of a problem. Typically, a fixed number of
evaluations (and, in consequence, of iterations) is defined by the user, and the performance of the different algorithms
studied is compared. However, this sort of comparison only measure the front aspect and does not provide any
indication regarding the computational effort that a certain algorithm requires to reach the true Pareto front of
a problem, i.e., the speed of the algorithm. We believe that this is an important issue because if we take into
account that evaluating the objective functions of a MOP can be time-consuming, it becomes of interest to know
how expensive is for a certain algorithm to reach the true Pareto front.

Our motivation in this work is to analyze the behavior of eight state-of-the-art multi-objective metaheuristics
when solving a set of scalable parameter-wise problems, those comprising the ZDT benchmark, considering their
formulation ranging from 8 up to 2048 variables. The considered algorithms are three genetic algorithms (NSGA-
II [2], SPEA2 [16], and PESA-II [18]), an evolution strategy (PAES [8]), a particle swarm optimization technique
(OMOPSO [13]), a cellular genetic algorithm (MOCell [12]), an differential evolution (GDE3 [9]), and a scatter
search (AbYSS [10]).

2 Optimization Problems Addressed

To carry out our study, it would be helpful to use problems which are scalable in terms of the number of variables while
keeping an invariable Pareto front. The ZDT test function family [15] fulfills this requirement. It offers, furthermore,
a group of problems with different properties: convex, non-convex, disconnected, multi-frontal, and non-uniformly
spaced. These problems have been widely used in many studies in the field since they were formulated.

Since we were interested in studying the behavior of the algorithms when solving scalable parameter-wise prob-
lems, we have evaluated each ZDT problem with 8, 16, 32, 64, 128, 256, 512, 1024, and 2048 variables. This way, we
can study not only what techniques behaves better when solving problems having many variables, but also if their
search capabilities remain constant or not when the number of problem variables arguments.

3 Algorithms

In this section we describe briefly the eight metaheuristics that we have considered in this study. We have used
the implementation of these algorithms provided by jMetal [5], a Java-based framework aimed at multi-objective
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optimization1.
The NSGA-II algorithm was proposed by Deb et al. [2]. It is based on obtaining a new population from the

original one by applying the typical genetic operators (selection, crossover, and mutation); then, the individuals in
the two populations are sorted according to their rank, and the best solutions are chosen to create a new population.
In the case of having to select some individuals with the same rank, a density estimation based on measuring the
crowding distance to the surrounding individuals belonging to the same rank is used to get the most promising
solutions.

SPEA2 was proposed by Zitler et al. in [16]. In this algorithm, each individual has assigned a fitness value
that is the sum of its strength raw fitness and a density estimation. The algorithm applies the selection, crossover,
and mutation operators to fill an archive of individuals; then, the non-dominated individuals of both the original
population and the archive are copied into a new population. If the number of non-dominated individuals is greater
than the population size, a truncation operator based on calculating the distances to the k-th nearest neighbor is
used. This way, the individuals having the minimum distance to any other individual are chosen.

PESA-II [18] uses an internal population from which parents are selected to create new solutions, and a external
population in where non-dominated solutions found are stored. This last population uses the same hyper-grid division
of phenotype (i.e., objective funcion) space adopted by PAES to maintain diversity in which region-based selection
is adopted. In region-based selection, the unit of selection is an hyperbox rather than an individual. The procedure
consists of selecting (using any of the traditional selection techniques) a hyperbox and then randomly select an
individual within such hyperbox.

PAES is a metaheuristic proposed by Knowles and Corne [8]. The algorithm is based on a simple (1+1) evolution
strategy. To find diverse solutions in the Pareto optimal set, PAES uses an external archive of nondominated
solutions, which is also used to decide about the new candidate solutions. An adaptive grid is used as density
estimator in the archive. We have used a real coded version of PAES, applying a polynomial mutation operator.

OMOPSO (Optimized MOPSO) is a particle swarm optimization algorithm for solving MOPs [13]. Its main
features include the use of the crowding distance of NSGA-II to filter out leader solutions and the use of mutation
operators to accelerate the convergence of the swarm. The original OMOPSO algorithm makes use of the concept of
ǫ-dominance to limit the number of solutions produced by the algorithm. We consider here a variant discarding the
use ǫ-dominance, being the leader population obtained after the algorithm has finished the result of the execution
of the technique.

GDE3 [9] starts with a population of random solutions, which becomes the current population. In each generation,
an offspring population is created using the differential evolution operators; then, the current population for the next
generation is updated using the solutions of both, the offspring and the current populations. Before continuing to
the next generation, the size of the population is reduced using non-dominated sorting and a pruning technique
based aimed at diversity preservation, in a similar way as NSGA-II, althouth the pruning used in GDE3 modifies
the crowding distance of NSGA-II in order to solve some drawbacks when dealing with problems having more than
two objectives.

MOCell [12] is a cellular genetic algorithm (cGA). As other multi-objective metaheuristics, it includes an external
archive to store the non-dominated solutions found so far. This archive is bounded and uses the crowding distance
of NSGA-II to keep diversity in the Pareto Front. We have used here an asynchronous version of MOCell, called
aMOCell4 in [11], in which the cells are explored sequentially (asynchronously). The selection is based on taking
an individual from the neighborhood of the current cell and another one chosen randomly from the archive. After
applying the genetic crossover and mutation operators, the new offspring is compared with the current one, replacing
it if better; in the case of both solution be non-dominated, the worst individual in the neighborhood is replaced by
the current one. In this two cases, the new individual is inserted into the archive.

AbYSS is an adaptation of the scatter search metaheuristic to the multi-objective domain [10]. It uses an external
archive similar to the one employed by MOCell. The algorithm incorporates operators of the evolutionary algorithms
domain, including polynomial mutation and simulated binary crossover in the improvement and solution combination
methods, respectively.

4 Experiments

We are interested in two goals: the behavior of the algorithms when solving the scalable ZDT benchmark and to
know which algorithms are faster in reaching to the Pareto front. Given that the true Pareto fronts of the ZDT
problem are known, a strategy could be to run the algorithms until they found them, but then it is possible that
some of them never achieve the optimal front. Our approach is to establish a stopping condition based on the the
high quality of the found Pareto front, and we have used the hypervolume [17] quality indicator for that purpose.

The hypervolume calculates the volume (in the objective space) covered by members of a non-dominated set
of solutions Q for problems where all objectives are to be minimized. Mathematically, for each solution i ∈ Q, a
hypercube vi is constructed with a reference point W and the solution i as the diagonal corners of the hypercube.

1jMetal is freely available to download at the following Web address: http://neo.lcc.uma.es/metal/.
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Figure 1: Fronts with different HV values obtained for problem ZDT1

The reference point can simply be found by constructing a vector of worst objective function values. Thereafter, a
union of all hypercubes is found and its hypervolume (HV ) is calculated:

HV = volume





|Q|
⋃

i=1

vi



 . (1)

Higher values of the hypervolume metrics are desirable. A property of this quality indicator is that it measures
both convergece to the true Pareto front and diversity of the obtained fronts.

Once the quality indicator we are going to use have been described, we need to establish a stopping condition to
be used in the executions of the algorithms. The idea is that the metaheuristics stop when they reach a percentage
of the HV of the true Pareto front which assures that the obtained front represents an accurate approximation to
it. To decide about that percentage, we show different approximations of the Pareto front for the problem ZDT1
with different percentages of HV in Fig. 1. We can observe that a front with a hypervolume of 98.26% represents a
reasonable approximation to the true Pareto fronts in terms of convergence and diversity of solutions. So, we have
taken 98% of the hypervolume of the true Pareto front as a criterion to consider that a MOP has been successfully
solved. Furthermore, those algorithms requiring fewer function evaluations to achieve this termination condition can
be consider to be faster. In those situations in which an algorithm is unable to get a front fulfilling this condition
after one maximum number of function evaluations, we consider that it has failed in solving the problem; this way,
we can obtain a hit rate for the algorithms, i.e., their percentage of successful executions. We set the maximum of
evaluations to ten million (500,000 were considered in [4]).

In our experiments, we check the stopping condition every 100 evaluations (that is, each iteration in the population
based metaheuristics), where we measure the hypervolume of the non-dominated solutions found so far. Therefore,
in NSGA-II, SPEA2, and GDE3 we have considered the non-dominated solutions in each generation, in PESA-II,
PAES, AbYSS, and MOCell the external population and, in MOPSO, the leader archive.

The obtained results are summarized in Tables 1 and 2, which include a rank of the algorithms according to their
scalability and speed, respectively.

Table 1: Ranking of the algorithms: scalability
ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 Global rank

1. GDE3 1. GDE3 1. GDE3 1. MOCell 1. OMOPSO 1. GDE3

2. MOCell 2. OMOPSO 2. AbYSS 2. PESA-II 2. GDE3 1. MOCell

3. SPEA2 3. MOCell 3. MOCell 3. SPEA2 3. AbYSS 3. AbYSS

4. AbYSS 4. AbYSS 4. NSGA-II 4. NSGA-II 4. MOCell 4. OMOPSO

5. OMOPSO 5. SPEA2 5. SPEA2 5. PAES 5. NSGA-II 4. SPEA2

6. NSGA-II 6. NSGA-II 6. PESA-II 6. AbYSS 6. SPEA2 6. NSGA-II

7. PESA-II 7. PAES 7. OMOPSO 7. GDE3 7. PESA-II 7. PESA-II

8. PAES 8. PESA-II 8. PAES 8. OMOPSO 8. PAES 8. PAES

Table 2: Ranking of the algorithms: speed
ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 Global rank

1. OMOPSO 1. OMOPSO 1. GDE3 1. MOCell 1. OMOPSO 1. GDE3

1. GDE3 2. GDE3 2. MOCell 2. PESA-II 2. GDE3 1. MOCell

3. MOCell 3. MOCell 3. NSGA-II 3. SPEA2 3. AbYSS 3. OMOPSO

4. PAES 4. AbYSS 4. OMOPSO 4. NSGA-II 4. MOCell 4. AbYSS

5. SPEA2 5. SPEA2 5. AbYSS 5. AbYSS 5. NSGA-II 5. NSGA-II

6. NSGA-II 6. NSGA-II 6. SPEA2 6. PAES 6. PESA-II 6. SPEA2

6. AbYSS 7. PESA-II 7. PESA-II 7. GDE3 7. SPEA2 7. PESA-II

8. PESA-II 8. PAES 8. PAES 8. OMOPSO 8. PAES 8. PAES
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The scalabity ranking considers first those algorithms solving the problems with the highest number of variables.
The ties are broken considering the number of evaluations in the most difficult instances. To make the discusion
clearer, we have marked in boldface those optimizers having a hit rate lower than 1.0 in at least one experiment, which
indicates that the algorithm does not scale well. According to this ranking, GDE3 is the most salient metaheuristic:
it achieves two best and two second best ranks. However, given the difficulties of this algorithm when solving ZDT4,
MOCell is the technique that appears as more reliable, in the sense that it is able to solve all the instances considered
in this study but the largest one on ZDT4, and it occupies the first rank in ZDT4. OMOPSO scales the best in two
problems (ZDT2 and ZDT6), but it is unable to solve ZDT4 and it tends to require more evaluations than other
algorithms when solving the larger instances of ZDT1 and ZDT3. SPEA2, AbYSS, and NSGA-II are in the middle
of the ranking: they never obtain the best result nor they are beyond the six position in the ranking. PESA-II is in
the last positions mainly because it does not scale well in ZDT2 and ZDT4. Finally, PAES is the last algorithm in
the ranking because of its low hit-rate in many experiments.

The ordering in Table 2 relies on the algorithms requiring globally the lower number of evaluations to find the
target Pareto front, i.e., we sort them according their speed. To make this ranking, we consider all the instances, not
only the largest ones. Thus, for each problem we have sorted the evaluations of the algorithms when solving each of
the instances, and the sum of the obtained positions determine the order of the techniques. If we do not consider the
ZDT4 problem, OMOPSO is globally the fastest algorithm: it requires the less number of evaluations in problems
ZDT1, ZDT2, ZDT6, and it is the fourth one in the ranking of ZDT3. GDE3 is the second algorithm in the ranking,
because it is first one in a problem, ZDT3, and the second one in ZDT1, ZDT2, and ZDT6. The next algorithms
are MOCell (first rank in ZDT4, a second position, and two third ones), AbYSS, SPEA2 (the first GA in the speed
ranking), and NSGA-II. Among the slowest metaheuristics we find again PESA-II and PAES. An interesting fact is
that, if we observe the two tables, the rankings are the same in problems ZDT2, ZDT4, and ZDT6. This suggests
that when an algorithm scales well with a problem, it may require a low number of function evaluations to solve it.

5 Conclusions

Our study have revealed differential evolution and particle swarm optimization are the most promising approaches
to deal with the scalable problems used in this work. GDE3 and OMOPSO do not only scale well but they are
among the fastest algorithms. Furthemore, we have shown that their search capabilities can be improved to solve
ZDT4 (multi-frontal), the problem which has appeared as the most difficult one to solve.

Two modern optimizers, MOCell and AbYSS, have shown a high degree of regularity in the tests. With the
exception of MOCell in ZDT4 (where it is the best technique), they are not in the first position in the scalabily and
the speed rankings, but they are around the third and fourth positions. Both metaheuristics are in the group of
algorithms having solved a higher number of instances, only failing again in ZDT4.

From the group of NSGA-II, SPEA2, and PESA-II, the first one is clearly the best in our experiments. In fact,
NSGA-II is very close to MOCell and AbYSS in the rankings. SPEA2 and PESA-II have difficulties in ZDT2 and
they use to be among the algorithms requering higher numers of function evaluations to reach the stopping condition.

Finally, PAES, the simplest of the optimizers in the study, is the algorithm scaling the worst, which is due to the
low hit rates it obtains in many instances.
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