

Málaga, 22 de noviembre de 2008

Informe Ejecutivo

Título:

PSO-2.0-2008: PSO Geométrico para la Localización Óptima de Celdas de Gestión en Redes

GSM

RESUMEN:

La localización y disposición de celdas de gestión en (MLM, Mobile Location Management) redes de telefonía mòviles GSM supone en la actualidad un importante y complejo problema al que los diseñadores de dichas redes se deben enfrentar. Este problema consiste en optimizar el número de celdas con capacidad gestora (paging cells) obteniendo así un coste óptimo (mínimo) de manejo de la red. En este estudio utilizamos dos técnicas de optimización diferentes para resolver el problema de MLM. En primer lugar empleamos el algoritmo GPSO (presentado en el deliverable PSO-1.0-2008). Se ha desarrollado una versión binaria de ésta técnica para adaptarlo a la codificación del problema MLM. En segundo lugar empleamos una técnica que consiste en la combinación de redes neuronales de Hopfield con un mecanismo de reinicio (Ball Dropping, HNN+BD). Ambos algoritmos son evaluados y comparados utilizando una serie de instancias de redes GSM basadas en escenarios realistas. Los resultados son prometedores para las dos técnicas ya que mejoran los resultados de otros métodos encontrados en la literatura, si bien, GPSO ofrecen resultados ligeramente mejores.

OBJETIVOS:

- 1. Definir el problema de la localización Óptima de Celdas Gestión en Redes GSM.
- 2. nalizar el comportamiento de GPSO y HNN+BD en la resolución del problema MLM.
- 3. Reportar los resultados y comparaciones experimentales.
- 4. Hacer públicas las instancias de redes GSM basadas en escenarios realistas.

Conclusiones:

- 1. Tanto GPSO como HNN+BD resuelven adecuadamente el problema MLM, si bien, GPSO ofrece resultados ligeramente mejores.
- 2. Las dos técnicas mejoran los resultados de otros métodos encontrados en la literatura.

Relación con entregables:

PRE: PSO-1.0-2008 (anterior o necesario de leer)

Málaga, November 22nd, 2008

Executive Summary

TITLE: PSO-2.0-2008: Geometric PSO for Mobility Management in GSM Networks

Abstract:

Mobile Location Management (MLM) is an important and complex telecommunication problem found in mobile cellular GSM networks. Basically, this problem consists in optimizing the number and location of paging cells to find the lowest location management cost. The aim of this study is to assess the performance of two different nature inspired algorithms when tackling this problem. The first technique is a recent version of Particle Swarm Optimization based on geometric ideas (GPSO, presented in PSO-1.0-2008). This approach is customized for the MLM problem by using the concept of Hamming spaces. The second algorithm consists of a combination of the Hopfield Neural Network coupled with a Ball Dropping technique. Both algorithms are evaluated and compared using a series of test instances based on realistic scenarios. The results are very encouraging for current applications, and show that the proposed techniques outperform existing methods in the literature.

GOALS:

- 1. Define the Mobile Location Management (MLM) problem.
- 2. Analyze the behavior of GPSO and HNN+BD in the resolution of MLM.
- 3. Report the experimental results and comparisons.
- 4. Make available the GSM network instances.

CONCLUSIONS:

- 1. Both GPSO and HNN+BD solve efficiently the MLM problem. Nevertheless GPSO offers slightly better results.
- 2. Both techniques outperform other algorithms found in the literature.

RELATION WITH

DELIVERABLES:

PRE: PSO-1.0-2008 (mandatory reading)

Geometric PSO for Mobility Management in GSM Networks

DIRICOM

November 2008

1. Introduction

Mobility Management becomes a crucial issue when designing infrastructure for wireless mobile networks. In order to route incoming calls to appropriate mobile terminals, the network must keep track of the location of each mobile terminal. Mobility management requests are often initiated either by a mobile terminal movement (crossing a cell boundary) or by deterioration of the quality of a received signal in a currently allocated channel. Due to the expected increase in the usage of wireless services in the future, the next generation of mobile networks should be able to support a huge number of users and their bandwidth requirements [1, 4].

Several strategies for Mobility Management have been used in the literature being the location area (LA) scheme one of the most popular [5, 10]. An analogous strategy is the *Reporting Cells* (RC) scheme suggested in [2]. In RC, a subset of cells in the network is designated as reporting cells. Each mobile terminal performs a location update only when it enters one of these reporting cells. When a call arrives, the search is confined to the reporting cell the user last reported and the neighboring bounded nonreporting cells. It was shown in [2] that finding an optimal set of reporting cells, such that the location management cost is minimized, is an NP-complete problem. For this reason, bioinspired algorithms have been commonly used to solve this problem [6, 9].

In this study, we use two nature inspired algorithms to assign the reporting cells of a network following the RC scheme. The first algorithm, called Geometric Particle Swarm Optimization (GPSO) [3], is a generalization of the Particle Swarm Optimization for virtually any solution representation, which works according to a geometric framework. The second technique combines a Hopfield Neural Network with a Ball Dropping (HNN+BD) mechanism. Our contributions are both to perform better with respect to existing works and to introduce the GPSO algorithm for solving Telecommunications problems. In addition, these two techniques are experimentally assessed and compared from different points of view such as quality of the solutions, the robustness and design issues.

The remaining of this report is organized as follows: Section 2 briefly explains the Mobility Management problem. The HNN+BD algorithm, is briefly described in section 3. After that, Section 4 presents a number of experiments and results that show the applicability of the proposed approaches to this problem. Finally, conclusions are drawn in Section 5.

2. The Mobility Management Problem

Basically, the Mobility (location) Management consists in reducing the total cost of managing a mobile cellular network. Two factors take part when calculating the total cost: the updating cost and the paging cost. The updating cost is the portion of the total cost due to location updates performed by roaming mobile terminals in the network. The paging cost is caused by the network during a location inquiry when the network tries to locate a user ¹.

According to the reporting cells scheme, there are two types of cells: reporting cells (RC) and non-reporting cells (nRC). A neighborhood is assigned to each reporting cell, which consists of all nRC that must also page the user in case of an incoming call. For both RC and nRC, a *vicinity* factor is calculated representing the maximum number of reporting neighbors for each cell that must page the user (including the cell itself) in case of an incoming call. Obviously, the vicinity factor of each RC is the number of neighbors it has (see Fig. 1).

For nRC, the vicinity factor is calculated based on the fact that each nRC might be in the neighborhood of more than one RC, the maximum number of paging neighbors that contains such a cell is considered its vicinity factor. Therefore, to calculate the total cost of the network location management we use the following equation:

$$Cost = \beta \times \sum_{i \in S} N_{LU}(i) + \sum_{i=0}^{N} N_{P}(i) \times V(i)$$
(1)

where, $N_{LU}(i)$ is the number of location updates for reporting cell number i, $N_P(i)$ is the number of arrived calls for cell i, V(i) is the vicinity factor for cell i, S is the set of cells defined as reporting cells, and N is the total number

¹Other costs like the cost of database management to register user's locations or the cost of the wired network (backbone) that connects the base stations to each other were not considered here, since these costs are assumed to be the same for all location management strategies and hence aren't contemplated in comparisons.

of cells in the network. β is a constant representing the cost ratio of a location update to a paging transaction in the network (typically $\beta = 10$). This function is used either as *fitness function* by the GPSO or *energy function* by the HNN.

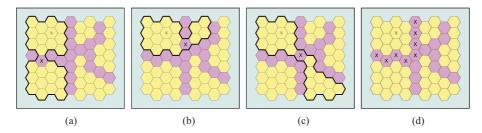


Figura 1: Cells marked as 'N' belong to the neighborhoods of at least three RCs (grey cells). For example, the number of neighbors for cell 'X' is 25, 17, and 22 for (a), (b) and (c) respectively (25 to consider the worst case). However, if a nRC belongs to more than two neighborhoods the calculation must be done for all of them, and then, the maximum number is considered as the vicinity factor for this nRC. For example, the nRC marked as 'N' is a part of the neighborhood of all cells marked as 'X' in (d)

Since the GPSO for Mobility Management was developed for Hamming space, each particle i of the swarm consists of a binary vector $x_i = (x_{i1}, x_{i2}, ..., x_{in})$ representing a reporting cell configuration, where each element x_{ij} represents a cell of the network; x_{ij} can have a value of either "0", representing a nRC, or "1", representing a RC. For example, in an 6×6 network, the particle position will have a length (n) of 36.

3. Hopfield Neural Network with Ball Dropping

In this approach, the Ball Dropping technique is used as the backbone of the algorithm that employs the HNN as its optimizer, and is inspired by the natural behavior of individual balls when they are dropped onto a non-even plate (a plate with troughs and crests). As can be expected, the balls will spontaneously move to the concave areas of the plate, and in a natural process, find the minimum of the plate. A predefined number of balls are dropped onto several random positions on the plate, which is equivalent to the random addition of a predefined number of paging cells to the current paging cell configuration of the network. As a result, after dropping a number of balls on the plate the energy value of the network increases suddenly and the HNN optimizer tries to reduce it by moving the balls around. The following procedure summarizes the basic form of this algorithm.

Algoritmo 1 Ball Dropping Mechanism

- 1: Drop a predefined number of balls onto random positions
- 2: repeat
- 3: Shake the plate
- 4: Remove unnecessary balls
- 5: until location of balls does not lead to any better configuration
- 6: Output: best solution found

In relation to Equation 1, the state vector of the HNN, 'X', is considered to have two different components for location updates and call arrival as follows:

$$X = [x_0 \ x_1 \ \land \ x_{N-1} \ x_N \ x_{N+1} \ \land \ x_{2N-1}]^T$$
 (2)

where x_0 to x_{N-1} is the location updates part, x_N to x_{2N-1} is the call arrival part and 'N' is the total number of cells in the network. This HNN model is designed to represents a RC configuration network, and then, tries to modify its RCs in order to reduce the total cost gradually. To summarize this explanation, we refer the reader to [7] where other aspects like generating a initial solution generation, definition of function to modify the state vector and reduction of the number of variations are given completely.

4. Simulation Results

In this section we present the experiments conducted to evaluate and compare the proposed GPSO and HNN+BD. We firstly give some details of the test network instances used. The experiments with both algorithms are presented and analyzed afterwards. We have made 10 independent runs for each algorithm and instance. Comparisons are made from different points of view such as the performance, robustness, quality of solutions and even design issues concerning the two algorithms. Finally, comparisons with other optimizers found in the literature are encouraging since our algorithms obtain competitive solutions which even beat traditional metaheuristic techniques in the previous state of the art.

4.1. Test GSM Network Instances

In almost all of the previous research in the literature, the cell attributes of the network are generated randomly. In general, two independent attributes for each cell are considered: the number of call arrivals (NP) and the number of location updates (NLU), which are set at random according to a normal distribution. However, these numbers are highly correlated in real world scenarios. Therefore, in this work, a more robust and realistic approach is used to seed the initial solutions, and consequently, the network attributes of each cell [8]. This makes the configuration of the solutions obtained in this work to be more realistic.

Therefore, a benchmark of twelve different instances were generated here to be used for testing GPSO and HNN+BD. The numeric values shaping the test networks configurations are given in tables below² for future reproduction of our results.

Test-Network 4		Test-Network 5		Test-Network 6		Test-Network 1		Test-Network 2			Test-Network 3						
Cell 0	NLU 335	NP 97	Cell 0	NLU 373	NP 86	Cell 0	NLU 859	NP 659	Cell 0	NLU 452	NP 484	Cell 0	NLU 280	NP 353	Cell 0	NLU 488	NP 455
1	944	155	1	958	155	1	1561	621	1	767	377	1	762	438	1	765	290
2	588 1478	103 500	2	264 571	99 119	2	450 599	93 98	2	360 548	284 518	2	686 617	599 503	2	271 626	201 475
4	897	545	4	431	132	4	535	151	3	591	365	3	447	403	3	550	247
5 6	793 646	495 127	5 6	451 693	97 153	5 6	425 1219	138 590	5 6	1451 816	1355 438	5 6	978 1349	560 648	5 6	1572 1010	1479 377
7	1159	119	7	1258 847	149 112	7	1638	137	7 8	574 647	415	7	562 608	431	7 8	635	300
8	1184 854	115 95	8	1412	173	8	991 646	114 72	9	989	366 435	9	1305	412 681	9	526 962	240 422
10 11	1503 753	529 140	10 11	1350 711	163 135	10 11	587 361	97 94	10 11	1105 736	510 501	10 11	966 466	508 408	10 11	1643 642	1545 274
12	744	120	12	356	81	12	559	101	12	529	470	12	664	503	12	570	485
13 14	819 542	103 61	13 14	951 2282	171 1016	13 14	787 1738	110 191	13 14	423 1058	376 569	13 14	710 746	530 473	13 14	249 842	196 354
15 16	476 937	103 117	15 16	2276 1217	1067 139	15 16	1433 562	165 87	15	434	361	15	282	336	15	516	488
17	603	69	17	341	96	17	404	63	Т	est-Network	10	1	Fest-Networ	k 11	Т	est-Networ	k 12
18 19	617 888	90 102	18 19	337 1210	87 121	18 19	342 595	79 97	Cell	NLU	NP	Cell	NLU	NP	Cell	NLU	NP
20	452	53	20	2228 1104	979 171	20	1312	164	0	144 304	83 98	0	461 665	619 584	0	392 551	562 509
21 22	581 773	86 86	21 22	1104 718	1/1 99	21 22	1129 884	92 102	2	201	66	2	534	554	2	440	466
23 24	741 693	125 131	23 24	362 669	113 119	23 24	630 306	138 80	3 4	266 137	85 100	3 4	449 172	89 91	3	441 200	83 49
25	1535	576	25	1189	158	25	593	87	5 6	206 127	80 79	5 6	339 201	84 93	5 6	430 280	45 90
26 27	921 1225	128 73	26 27	1032 620	157 93	26 27	603 977	82 136	7	393	112	7	438	89	7	347	84
28 29	1199 710	133 139	28 29	893 596	140 112	28 29	1354 1225	122 641	8	162 187	46 116	8 9	186 144	63 64	8	109 98	30 43
30	782	464	30	367	74	30	421	158	10 11	265 552	82 99	10 11	542 803	553 515	10 11	452 723	502 467
31 32	879 1553	477 532	31 32	389 418	108 120	31 32	594 689	163 99	12	565	83	12	884	528	12	813	440
33	613	68	33	220	102	33	569	115	13 14	467 277	95 114	13 14	552 388	75 62	13 14	721 572	99 60
34 35	1044 400	121 148	34 35	799 344	120 117	34 35	1554 733	631 534	15	444	109	15	384	68	15	643	82
	est-Network			Test-Networ			Fest-Networ		16 17	387 752	95 83	16 17	417 559	77 95	16 17	600 547	92 95
Cell	NLU	NP	Cell	NLU	NP	Cell	NLU	NP	18	457 271	76 84	18 19	403 247	90 60	18 19	289 205	77 74
0	354 819	160 198	0	293 651	88 134	0	225 692	85 128	20	249	80	20	233	79	20	544	441
2	214	75	2	239	53	2	471	124	21 22	468 469	90 74	21 22	408 550	90 83	21 22	842 1008	446 417
3 4	394 238	147 135	3 4	470 379	73 69	3 4	776 478	104 106	23	612 571	103 114	23 24	538 431	93 57	23 24	683 614	88 69
5	505 433	99 134	5	1089 690	435 435	5	1034 931	152 678	25	1335	678	25	604	99	25	501	85
7	397	134	7	615	416	7	890	807	26 27	802 656	112 87	26 27	347 404	65 91	26 27	702 644	123 95
8 9	588 895	164 121	8	509 557	137 68	8	445 866	124 137	28	731	124	28	539	75	28	469	77
10	658	129	10	472	68	10	1068	136	29 30	274 367	86 104	29 30	290 248	69 103	29 30	296 617	64 457
11 12	636 462	121 104	11 12	481 678	80 100	11 12	699 737	112 108	31 32	533 429	125 84	31 32	540 423	107 76	31 32	911 989	412 365
13 14	925 1017	134 163	13 14	860 1229	124 446	13 14	796 1569	120 706	33	542	83	33	526	74	33	472	69
15	339	86	15	851	401	15	520	117	34 35	1306 1308	708 615	34 35	840 822	107 152	34 35	428 306	65 70
16 17	398 657	122 95	16 17	328 527	71 77	16 17	324 651	93 94	36	773	120	36	404	52	36	421	76
18	945	122	18	551	86	18	754	75	37 38	468 597	107 81	37 38	413 501	68 71	37 38	482 441	75 67
19 20	1088 828	161 148	19 20	708 626	64 109	19 20	582 552	83 99	39 40	374 866	99 780	39 40	376 608	113 434	39 40	276 387	68 74
21	995	130	21	640	69	21	570	98	41	1050	697	41	1120	586	41	586	82
22 23	687 295	128 114	22 23	924 507	108 86	22 23	809 384	103 92	42 43	523 588	105 113	42 43	581 449	90 62	42 43	591 357	94 67
24 25	324 652	101 153	24 25	334 1187	74 171	24 25	330 588	85 89	44	687	113	44	489	70	44	321	66
26	1130	142	26	868	74	26	652	117	45 46	735 634	132 97	45 46	489 516	97 96	45 46	289 318	47 66
27 28	2558 1445	912 191	27 28	1324 666	512 86	27 28	584 570	89 107	47	449	99	47	592	86	47	453	58
29	959	151	29	775	87	29	540	84	48 49	595 852	133 699	48 49	600 703	67 496	48 49	454 278	77 81
30 31	602 314	133 92	30 31	842 358	60 50	30 31	620 298	88 85	50 51	852 595	768 97	50 51	705 693	573 110	50 51	294 477	80 83
32 33	311 632	123 127	32 33	366 1545	75 149	32 33	376 659	102 140	52	507	86	52	573	99	52	514	90
34	1250	155	34	1148	92	34	604	98	53 54	687 728	101 123	53 54	525 503	93 86	53 54	309 265	48 51
35 36	2470 2299	991 847	35 36	1239 1406	420 469	35 36	577 522	100 77	55	825	154	55	503	71	55	325	73
37	1051	188	37	1088	104	37	558	88	56 57	628 528	109 91	56 57	522 642	78 91	56 57	348 595	64 102
38 39	602 350	140 124	38 39	1203 304	154 76	38 39	615 336	101 88	58 59	1097 894	667 735	58 59	1076 639	589 490	58 59	569 383	80 100
40 41	282 796	81 135	40 41	646 1215	56 92	40 41	381 763	112 129	60	374	82	60	380	83	60	278	66
42	1226	147	42	758	91	42	639	99	61 62	523 468	94 73	61 62	577 466	100 88	61 62	455 540	69 81
43 44	1076 1301	149 172	43 44	646 885	103 101	43 44	565 567	103 117	63	891	130	63	415	94	63	438	79
45	909	128	45	780	78	45	765	104	64 65	1414 1368	692 669	64 65	790 841	115 123	64 65	310 429	63 82
46 47	622 413	128 105	46 47	1024 307	169 74	46 47	641 345	119 96	66 67	653 445	115 88	66 67	590 437	81 49	66 67	473 1070	83 450
48 49	367 1125	115 143	48 49	937 1308	477 544	48 49	566 1579	148 716	68	590	99	68	437	92	68	901	414
50	1053	127	50	879	110	50	852	149	69 70	385 309	100 74	69 70	249 267	94 60	69 70	659 288	483 53
51 52	585 701	126 118	51 52	682 533	87 62	51 52	876 789	104 144	71	647	104	71	555	109	71	481	97
53	722	109	53	527	70	53	1126	126	72 73	717 878	96 104	72 73	426 422	58 60	72 73	705 675	125 127
54 55	856 646	96 184	54 55	602 454	69 123	54 55	948 485	164 134	74	1367	653	74	640	91	74	476	47
56	422 426	136	56	666 703	463 454	56 57	905	756 744	75 76	602 709	128 100	75 76	502 535	75 90	75 76	629 757	70 90
57 58	568	122 142	57 58	1118	465	58	1000 1100	179	77 78	603 530	91 99	77 78	571 403	95 81	77 78	1041 912	434 395
59 60	264 480	138 143	59 60	353 474	133 67	59 60	429 902	83 109	79	288	72	79	239	85	79	596	499
61	223	92	61	258	54	61	536	114	80 81	317 462	93 82	80 81	276 403	80 84	80 81	190 306	37 69
62 63	734 341	114 153	62 63	629 273	131 102	62 63	706 253	113 102	82	793	116	82	575	71	82	558	120
50		.50	. ~				_50		83 84	430 455	105 117	83 84	460 385	77 69	83 84	579 668	102 99
									85 86	294 526	94 108	85 86	385 585	77 98	85 86	544 743	68 88
									87	619	120	87	881	492	87	815	490
									88 89	580 261	101 72	88 89	751 496	408 566	88 89	736 517	440 587
									90	169	98	90	150	79	90	113	41
									91 92	178 378	99 91	91 92	169 394	70 100	91 92	140 342	59 81
									93 94	118 214	89 77	93 94	199 357	99 93	93 94	256 461	64 70
									95	123	79	95	212	84	95	212	57
									96 97	264 232	67 115	96 97	477 573	83 585	96 97	484 470	76 470
									98	344 162	87 82	98 99	639 450	570 615	98 99	542 374	419 459
									99	102	82	99	450	015	99	3/4	409

²Four groups of Test-Network (TN) instances: (1)TN1-2-3 with 4×4 cells; (2)TN4-5-6 with 6×6 cells; (3)TN7-8-9 with 8×8 cells; (4)TN10-11-12 with 10×10 cells. TN files are available in URL http://oplink.lcc.uma.es/problems/mmp.html.

4.2. Experimental Results

 $12(10 \times 10)$

370.868

We have conducted different experiments with several configurations of GPSO and HNN+BD depending on the test network used. Since the two algorithms perform quite different operations, we have set the parameters (Table 1) after preliminary executions of the two algorithms (with each instance) where the computational effort in terms of time and number of evaluations was balanced.

Tabla 1: Parameter settings for HNN+BD and GPSO. The columns indicate: the number of dropping balls (N.DroppBalls) and the number of trials (N.Trials) for HNN+BD. For GPSO are reported: the number of particles (N.Particles), the crossover probability (P_{cross}) , the mutation probability (P_{mut}) and the weighted values $(w_a, w_b \text{ and } w_c)$.

Test Network	HNN+E	BD	GPSO						
Dim.	N.DroppBalls	N.Trials	N.Particles	P_{cross}	P_{mut}	$w_a + w_b + w_c$			
(4×4)	7	3	20						
(6×6)	10	5	50	0.9	0.1	0.33+0.33+0.33			
(8×8)	15	5	100	0.9		0.33±0.35±0.35			
(10×10)	15	5	120						

After the initial experimentation, several results were obtained; they are shown in Table 2. The first column contains the number and dimension (in parenthesis) of each test network. Three values are presented for each evaluated algorithm: the best cost (out of 10 runs), the average cost (Aver.) of all the solutions, and the deviation (Dev.) percentage from the best cost.

Test Network]	HNN+BD		GPSO				
No.(Dim.)	Best	Aver.	Dev.	Best	Aver.	Dev.		
$1 (4 \times 4)$	98,535	98,627	0.09%	98,535	98,535	0.00%		
$2(4\times4)$	97,156	$97,\!655$	0.51%	$97,\!156$	$97,\!156$	0.00%		
$3 (4 \times 4)$	95,038	95,751	0.75%	95,038	95,038	0.00%		
$4(6\times6)$	173,701	174,690	0.56%	173,701	174,090	0.22%		
$5(6 \times 6)$	182,331	182,430	0.05%	182,331	182,331	0.00%		
$6 (6 \times 6)$	174,519	176,050	0.87%	174,519	175,080	0.32%		
7 (8 × 8)	308,929	311,351	0.78%	308,401	310,062	0.53%		
$8 (8 \times 8)$	287,149	287,149	0.00%	287,149	287,805	0.22%		
$9 (8 \times 8)$	264,204	264,695	0.18%	264,204	$264,\!475$	0.10%		
$10 \ (10 \times 10)$	386,351	387,820	0.38%	385,972	387,825	0.48%		
$11 (10 \times 10)$	358,167	359,036	0.24%	359,191	359,928	0.20%		

Tabla 2: Results for Test Networks obtained by HNN+BD and GPSO.

As it can be seen from the results, the two algorithms have similar performance in almost all of the instances, although there are a few differences for the large test networks. For example, GPSO obtains better solutions in Test-Network 7 and 10, while, HNN+BD obtains a better solution in Test-Network 11. In addition, it can be noticed that the deviation percentage from the best cost is generally lower in GPSO than in HNN+BD, specially for the smaller test networks. This behavior leads us to believe that the GPSO approach is more robust than HNN+BD, but just slightly.

0.89%

370,868

373,722

374,205

Another obvious difference between HNN+BD and GPSO lies in the behavior of each algorithm. This can be observed in Fig. 2, where we show a graphical representation of algorithm runs for the different evaluated networks. Each graph, corresponding to one of the twelve test networks, plots a representative trace of the execution of each algorithm tracking the best solution obtained versus the number of iterations. On the one hand, GPSO shows a typical behavior in evolutionary metaheuristics, that is, it tends to converge from the solutions in the initial population to an optimal reporting cell arrangement. Graphically, the GPSO operation is represented by a monotonous decreasing (minimization) curve. On the other hand, HNN+BD carries out a different searching strategy, as from the initialization, it provokes frequent shaking scenarios in the population with the purpose of gradually diversifying and intensifying the search. These "shakes" are carried out by means of the Ball Dropping technique (Section 3) when no improvement in the overall condition of the network is detected, so the frequency of this operation is variable.

Evidently, as Fig. 2 shows, the number of drops in larger test networks is higher than in smaller ones, since the number of iterations required here to converge is also higher. Graphically, this behavior produces intermittent peaks and valleys in the evolution line.

From the point of view of the quality of solutions, as expected, optimal reporting cell configurations for all test networks split the network into smaller sub-networks by clustering the full area. This property can be seen in the large instances in a much clearer way than in the short ones (Fig. 3).

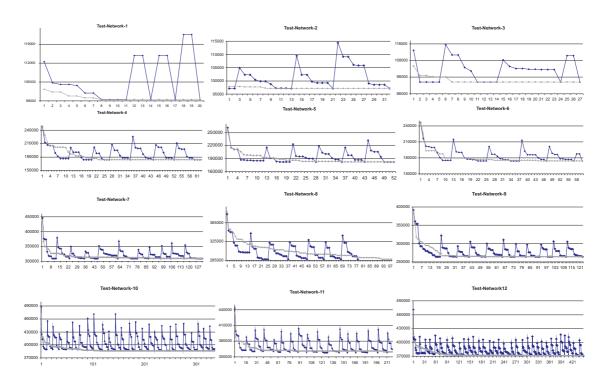


Figura 2: Cost values level (Y axis) versus iterations (X axis) of all the test networks. Each graphic plots the energy level obtained, we track the evolution of the HNN+BD algorithm (black line with peaks and valleys), and the fitness level in the evolution of the GPSO algorithm (concave grey curve)

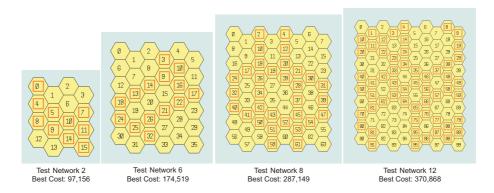


Figura 3: Paging Cells (with squares) configurations obtained as solutions by the two algorithms (the same solutions) in Test Network 2, Test Network 6, Test Network 8 and Test Network 12. Neighborhood area clusters are easily visible in larger instances. All the legends show the Best Cost found by both algorithms

4.3. Comparison with Other Optimizers

To the best of our knowledge a Genetic Algorithm (GA) is the only algorithm that can be compared against in this work. The modeling of the problem, the quality of the initial population, and the number of iterations are the main design issues that can affect the performance of the GA. When comparing the proposed approaches with a GA implementation given in [6], one can observe two advantages in terms of convergence and quality of solution in our two new approaches.

Despite the general good behavior of the GA, our two approaches generate a better solution when solving the Test-Network-2 (6×6 instance provided in [6]) in additional experiments. The energy value obtained by the GA is 229,556 with a total of 26 paging cells in the network, while, the cost obtained by HNN+BD in this work is 211,278 with 24 paging cells, and the GPSO obtained a cost of 214,313 with 23 paging cells. With respect to HNN+BD, a reasonable explanation for this difference could be due to the setup parameters used for the GA in [6]. However, our GPSO uses a similar setup parameters compared to the GA, providing a better solution with a smaller number of paging cells.

5. Conclusions

This report addresses the use of two nature inspired approaches to solve the Mobile Location Management problem found in telecommunications: a new binary Particle Swarm Optimization algorithm called GPSO, and an algorithm based on a Hopfield Neural Network hybridized with the Balls Dropping Technique.

The problem is described and tackled following the Reporting Cells Scheme. In addition, the design and operation of HNN+BD and GPSO are discussed. Twelve test networks of different dimensions, generated following realistic scenarios of mobile networks, were for the first time used in this work. In addition, a comparison of the algorithms is carried out focusing on the performance, robustness, and design issues.

In conclusion, simulation results are very encouraging and show that the proposed algorithms outperform existing methods. Both approaches prove themselves as very powerful optimizers providing fast and good quality solutions.

This work has been carried out as a continuation of previous works where metaheuristics techniques were applied to solve the Mobile Location Management problem. For further work, we are interested in evaluating new test networks under different conditions of topology and dimension. In addition, new experiments will be carried out using different location area schemes.

Referencias

- [1] D.P. Agrawal and Q-A. Zeng. Introduction to Wireless and Mobile Systems. Thomson Brooks/Cole Inc, 2003.
- [2] Amotz Bar-Noy and Ilan Kessler. Tracking mobile users in wireless communication networks. In *INFOCOM* (3), pages 1232–1239, 1993.
- [3] DIRICOM. Geometric Particle Swarm Optimization Implementation. Technical report, PSO-1.0-2008 University of Malaga, Spain, 2008.
- [4] Y.-B. Lin and I. Chlamatac. Wireless and Mobile Network Architecture. John Wiley and Sons, 2001.
- [5] R. Subrata and A.Y. Zomaya. Location management in mobile computing. In ACS/IEEE International Conference on Computer Systems and Applications, pages 287–289, 2001.
- [6] Riky Subrata and Albert Y. Zomaya. A comparison of three artificial life techniques for reporting cell planning in mobile computing. *IEEE Trans. Parallel Distrib. Syst.*, 14(2):142–153, 2003.
- [7] J. Taheri and A.Y. Zomaya. The use of a hopfield neural network in solving the mobility management problem. In *IEEE/ACS International Conference on Pervasive Services*, *ICPS 2004*, pages 141–150, Jul 2004.
- [8] J. Taheri and A.Y. Zomaya. Realistic simulations for studying mobility management problems. *Int. Journal of Wireless and Mobile Computing*, 1(8), 2005.
- [9] Javid Taheri and Albert Y. Zomaya. A genetic algorithm for finding optimal location area configurations for mobility management. In *LCN '05: Proceedings of the The IEEE Conference on Local Computer Networks 30th Anniversary*, pages 568–577, Washington, DC, USA, 2005. IEEE Computer Society.
- [10] Hsiao-Kuang Wu, Ming-Hui Jin, Jorng-Tzong Horng, and Chen-Yi Ke. Personal paging area design based on mobile's moving behaviors. In *Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies, INFOCOM 2001*, volume 1, pages 21–30, 2001.